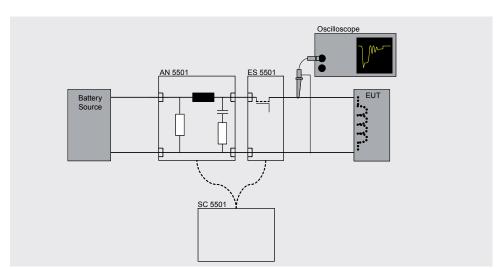


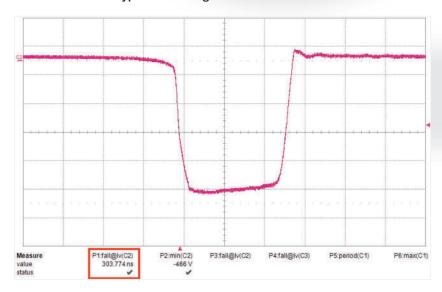
AES 5501 AUTOMOTIVE EMISSIONS SYSTEM FOR ISO 7637-2

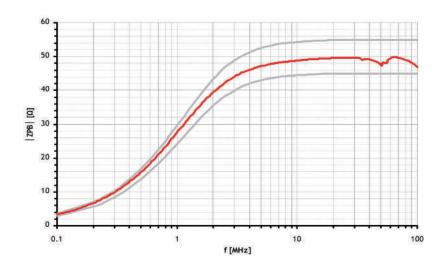


- The only complete, compliant solution for ISO 7637-2 emissions testing
- Clean, reliable 100 A operation with very low voltage drop
- Industry standard relay footprint for a wide selection of relays (one 100 A relay included)
- Separate control station with automatic, manual or external triggering of the switching behavior
- Smaller switch enclosure for easier compliance to various cable-length requirements
- Totally redesigned AN with improved, fully compliant impedance curve
- Convenient measurement ports

The AES 5501 is a system of electronic and mechanical switches, an artificial network, and a unique control station designed for emissions testing to ISO 7637-2. Having gone through meticulous development and intensive beta testing, the AES 5501 contains unique features and uncompromising quality and conformity found nowhere else. Consisting of a four-part solution, the user has complete control over where, when and how the switches can be placed and controlled, including the necessary drive voltages for the relays.

The 100 A connectors are carefully placed and countersunk to allow precise cabling between the switches, the artificial network and test bench and allows for the electronic or mechanic switches to be placed at any point before or after the artificial network. Multiple switches may also be utilized at the same time as required. This careful attention to detail for switch placement and cable length means that numerous manufacturer standards can also be met. The AES 5501 features a rugged construction with unpainted underside for good earth contact, precise switching control and numerous monitoring locations. A counter for the relay and LED indicators for both electronic and mechanical switches are provided. The AES 5501 has temperature controlled fans for quiet operation and a thermal shutdown feature.


Block diagram



AES 5501 AUTOMOTIVE EMISSIONS SYSTEM FOR ISO 7637-2

Electronic switch - typical switching curve with test load

Typical impedance curve of AN 5501

AES 5501 AUTOMOTIVE EMISSIONS SYSTEM FOR ISO 7637-2

Technical specifications

Complete system 10 Battery current100 AInrush current 10 300 A for 200 msBattery voltage0 to 60 VDCShunt resistor (R _s)10, 20, 40, 120 Ω , Ext.Trigger modesExternal, internal, manualBattery off time (t _{ort})10 ms - 10 s ± (10% + 10 ms)Battery on time (t _{ort})0.5 ms - 10.5 s ± (10% + 10 ms)Mains input voltage85 - 264 VAC, 47 - 63 HzAvailable relay voltage12, 24, 36 V (for 42 V applications)Electronic switchSwitching time Δt_s 300 ns ±20% 30 Voltage drop<1 V @ 25 ATypical 2.1 V @ 100 ATransient voltage protection440 VMechanical switchTypeAutomotive relayContactsHigh purity AgNi with no suppression across contactsVoltage rating> 400 VArtificial networkInductance5 μ HCapacitance0.1 μ FResistance50 Ω
Inrush current 20 300 A for 200 msBattery voltage0 to 60 VDCShunt resistor (R_s)10, 20, 40, 120 Ω, Ext.Trigger modesExternal, internal, manualBattery off time (t_{orf})10 ms – 10 s ±(10% + 10 ms)Battery on time (t_{orf})0.5 ms – 10.5 s ±(10% + 10 ms)Mains input voltage85 – 264 VAC, 47 – 63 HzAvailable relay voltage12, 24, 36 V (for 42 V applications)Electronic switchSwitching time Δt_s 300 ns ±20% 3 Voltage drop<1 V @ 25 A Typical 2.1 V @ 100 ATransient voltage protection440 VMechanical switchTypeAutomotive relayContactsHigh purity AgNi with no suppression across contactsVoltage rating> 400 VArtificial networkInductanceCapacitance5 μ HCapacitance0.1 μ FResistance50 Ω
Battery voltage0 to 60 VDCShunt resistor (R_s)10, 20, 40, 120 Ω, Ext.Trigger modesExternal, internal, manualBattery off time (t_{orf})10 ms - 10 s ±(10% + 10 ms)Battery on time (t_{orf})0.5 ms - 10.5 s ±(10% + 10 ms)Mains input voltage85 - 264 VAC, 47 - 63 HzAvailable relay voltage12, 24, 36 V (for 42 V applications)Electronic switchSwitching time Δt_s 300 ns ±20% 3 Voltage drop<1 V @ 25 A
Shunt resistor (R_s)10, 20, 40, 120 Ω , Ext.Trigger modesExternal, internal, manualBattery off time (t_{orf})10 ms – 10 s ± (10% + 10 ms)Battery on time (t_{orf})0.5 ms – 10.5 s ± (10% + 10 ms)Mains input voltage85 – 264 VAC, 47 – 63 HzAvailable relay voltage12, 24, 36 V (for 42 V applications)Electronic switchSwitching time Δt_s 300 ns ±20% 3 Voltage drop<1 V @ 25 A Typical 2.1 V @ 100 ATransient voltage protection440 VMechanical switchTypeAutomotive relayContactsHigh purity AgNi with no suppression across contactsVoltage rating> 400 VArtificial networkInductanceCapacitance0.1 μFResistance50 Ω
Trigger modesExternal, internal, manualBattery off time (t_{off}) $10 \text{ ms} - 10 \text{ s} \pm (10\% + 10 \text{ ms})$ Battery on time (t_{off}) $0.5 \text{ ms} - 10.5 \text{ s} \pm (10\% + 10 \text{ ms})$ Mains input voltage $85 - 264 \text{ VAC}$, $47 - 63 \text{ Hz}$ Available relay voltage $12, 24, 36 \text{ V}$ (for 42 V applications)Electronic switchSwitching time Δt_s $300 \text{ ns} \pm 20\% ^3$ Voltage drop $< 1 \text{ V @ 25 A}$ Typical 2.1 V @ 100 A Transient voltage protection 440 V Mechanical switchTypeAutomotive relayContactsHigh purity AgNi with no suppression across contactsVoltage rating $> 400 \text{ V}$ Artificial networkInductance $5 \mu \text{H}$ Capacitance $0.1 \mu \text{F}$ Resistance 50Ω
Battery off time (t_{off})10 ms – 10 s ±(10% + 10 ms)Battery on time (t_{off})0.5 ms – 10.5 s ±(10% + 10 ms)Mains input voltage85 – 264 VAC, 47 – 63 HzAvailable relay voltage12, 24, 36 V (for 42 V applications)Electronic switchSwitching time Δt_s 300 ns ±20% 3)Voltage drop<1 V @ 25 A Typical 2.1 V @ 100 ATransient voltage protection440 VMechanical switchTypeAutomotive relayContactsHigh purity AgNi with no suppression across contactsVoltage rating> 400 VArtificial networkInductance5 μHCapacitance0.1 μFResistance50 Ω
Battery on time (t_{on}) 0.5 ms – 10.5 s ±(10% + 10 ms) Mains input voltage 85 – 264 VAC, 47 – 63 Hz Available relay voltage 12, 24, 36 V (for 42 V applications) Electronic switch Switching time Δt_s 300 ns ±20% 3 Voltage drop <1 V @ 25 A Typical 2.1 V @ 100 A Transient voltage protection 440 V Mechanical switch Type Automotive relay Contacts High purity AgNi with no suppression across contacts Voltage rating > 400 V Artificial network Inductance 5 μ H Capacitance 0.1 μ F Resistance 50 Ω
Mains input voltage $85 - 264$ VAC, $47 - 63$ HzAvailable relay voltage 12 , 24 , 36 V (for 42 V applications)Electronic switch $300 \text{ ns} \pm 20\%^{3}$ Switching time Δt_s $300 \text{ ns} \pm 20\%^{3}$ Voltage drop $<1 \text{ V @ } 25 \text{ A}$ Typical $2.1 \text{ V @ } 100 \text{ A}$ Transient voltage protection 440 V Mechanical switchTypeAutomotive relayContactsHigh purity AgNi with no suppression across contactsVoltage rating $>400 \text{ V}$ Artificial networkInductance $5 \mu \text{H}$ Capacitance $0.1 \mu \text{F}$ Resistance 50Ω
Available relay voltage 12, 24, 36 V (for 42 V applications) Electronic switch Switching time Δt_s 300 ns $\pm 20\%$ 3) Voltage drop $<1 \lor @ 25 \land Typical 2.1 \lor @ 100 \land$ Transient voltage protection 440 V Mechanical switch Type Automotive relay Contacts High purity AgNi with no suppression across contacts Voltage rating $> 400 \lor V$ Artificial network Inductance $5 \mu H$ Capacitance $0.1 \mu F$ Resistance 50Ω
Electronic switch Switching time Δt_s 300 ns ±20% 3 Voltage drop $<1 \text{ V @ 25 A}$ Typical 2.1 V @ 100 A Transient voltage protection 440 V Mechanical switch Type Automotive relay Contacts High purity AgNi with no suppression across contacts Voltage rating $>400 \text{ V}$ Artificial network Inductance $5 \mu H$ Capacitance $0.1 \mu F$ Resistance 50Ω
Switching time Δt_s 300 ns ±20% 3) Voltage drop <1 V @ 25 A Typical 2.1 V @ 100 A Transient voltage protection 440 V Mechanical switch Type Automotive relay Contacts High purity AgNi with no suppression across contacts Voltage rating > 400 V Artificial network Inductance 5 μ H Capacitance 0.1 μ F Resistance 50 Ω
Voltage drop $<1 \ V @ 25 \ A$ Typical $2.1 \ V @ 100 \ A$ Transient voltage protection $440 \ V$ Mechanical switch Type Automotive relay Contacts High purity AgNi with no suppression across contacts Voltage rating $> 400 \ V$ Artificial network Inductance $5 \ \mu H$ Capacitance $0.1 \ \mu F$ Resistance $50 \ \Omega$
Voltage drop $<1\ V @ 25\ A$ Typical $2.1\ V @ 100\ A$ Transient voltage protection $440\ V$ Mechanical switch Type Automotive relay Contacts High purity AgNi with no suppression across contacts Voltage rating $>400\ V$ Artificial network Inductance $5\ \mu H$ Capacitance $0.1\ \mu F$ Resistance $50\ \Omega$
Typical 2.1 V @ 100 A Transient voltage protection Mechanical switch Type Automotive relay Contacts High purity AgNi with no suppression across contacts Voltage rating > 400 V Artificial network Inductance $5 \mu H$ Capacitance $0.1 \mu F$ Resistance 50Ω
Transient voltage protection 440 V Mechanical switch Type Automotive relay Contacts High purity AgNi with no suppression across contacts Voltage rating $> 400 \text{ V}$ Artificial network Inductance $5 \mu \text{H}$ Capacitance $0.1 \mu \text{F}$ Resistance 50Ω
Type Automotive relay Contacts High purity AgNi with no suppression across contacts Voltage rating $> 400 \text{ V}$ Artificial network Inductance $5 \mu \text{H}$ Capacitance $0.1 \mu \text{F}$ Resistance 50Ω
Contacts High purity AgNi with no suppression across contacts Voltage rating $> 400 \text{ V}$ Artificial network Inductance $5 \mu \text{H}$ Capacitance $0.1 \mu \text{F}$ Resistance 50Ω
Voltage rating $> 400 \text{ V}$ Artificial network Inductance $5 \mu H$ Capacitance $0.1 \mu F$ Resistance 50Ω
Artificial network Inductance $5 \mu H$ Capacitance $0.1 \mu F$ Resistance 50Ω
Inductance $5 \mu H$ Capacitance $0.1 \mu F$ Resistance 50Ω
Capacitance $0.1\mu F$ Resistance 50Ω
Resistance 50Ω
1 man a diaman
Impedance As per ISO 7637-2 (see above impedance curve)
Connectors 100 A MC type, countersunk, 50 mm above ground plan
Housing Stainless steel, unpainted underside, screw terminal and earth connections
Indicators Counter on relay, LED indicator on controller for mechan and electronic switches
Measurements ports MS 5501, ES 5501 - directly connected to output AN 5501 – 5.6 k output impedance (to output connector necessary for improved RF performance)
Physical dimensions (L x W x H) ES 5501 125 x 125 x 125 mm MS 5501 125 x 125 x 125 mm AN 5501 340 x 270 x 205 mm
All tolerances ± 10% unless otherwise noted.

AES 5501

AUTOMOTIVE EMISSIONS SYSTEM FOR ISO 7637-2

- 1) Active, temperature dependant cooling. The ES 5501 is depending on duty cycle, approximately 3 minutes at 100 A with 100% duty cycle before the switch will be deactivated for cooling.
- 2) With supplied relay or electronic switch
- 3) With test load defined in ISO 7627-2. Purely resistive loads display typically in the range of a few microseconds.

Accessories

Included: 4 x 60 mm cable, MC connector

Included: 2 x 100 mm cable, MC connector

Included: 4×0 mm pin, used when the housings will be pushed together (for zero millimeter distance) Included: INA 5031 - 100:1 high voltage probe compliant to ISO 7637-2

Optional: INA 163 – Set of ten MC to banana adapters (only available in red)

Optional: INA 5500-TL – Reference load (R = 0.6 Ω , L = 50 μ H)

Optional: INA 5500-CK – Calibration kit for impedance curve verification (used for connection to network analyzer)

Optional: MS 5501 – Additional unit for additional prepared relays

Optional: Various inserts for MC 5501 for industry standard relay footprints

Switch housings are compact, optimized for comformity to strict layout requirements and offer ample earth contacts.

Nordstrasse 11F 4542 Luterbach Switzerland T+41 32 681 40 40 F+41 32 681 40 48 sales@teseq.com www.teseq.com

